HOME

Publications:

  1. Nakanishi, S., Teranishi, Y., Noda, M., Notake, M., Watanabe, Y., Kakidani, H., Jingami, H. & Numa, S. (1980) The protein-coding sequence of the bovine ACTH--LPH precursor gene is split near the signal peptide region. Nature 287, 752-755.
  2. Nakanishi, S., Teranishi, Y., Watanabe, Y., Notake, M., Noda, M., Kakidani, H., Jingami, H. & Numa, S. (1981) Isolation and characterization of the bovine corticotropin/-lipotropin precursor gene. Eur. J. Biochem. 115, 429-438.
  3. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Hirose, T., Inayama, S., Nakanishi, S. & Numa, S. (1982) Cloning and sequence analysis of cDNA for bovine adrenal prepro-enkephalin. Nature 295, 202-206.
  4. Noda, M., Teranishi, Y., Takahashi, H., Toyosato, M., Notake, M., Nakanishi, S. & Numa, S. (1982) Isolation and structural organization of the human preproenkephalin gene. Nature 297, 431-434.
  5. Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M., Inayama, S., Nakanishi, S. & Numa, S. (1982) Cloning and sequence analysis of cDNA for porcine -neo-endorphin/dynorphin precursor. Nature 298, 245-249.
  6. Furutani, Y., Morimoto, Y., Shibahara, S., Noda, M., Takahashi, H., Hirose, T., Asai, M., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1983) Cloning and sequence analysis of cDNA for bovine corticotropin-releasing factor precursor. Nature 301, 537-540.
  7. Horikawa, S., Takai, T., Toyosato, M., Takahashi, H., Noda, M., Kakidani, H., Kubo, T., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1983) Isolation and structural organization of the human preproenkephalin B gene. Nature 306, 611-614.

  1. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. & Numa, S. (1982) Primary structure of -subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793-797.
  2. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983) Primary structures of - and -subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301, 251-255.
  3. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983) Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302, 528-532.
  4. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotaini, S., Kayano, T., Hirose, T., Inayama, S. & Numa, S. (1983) Cloning and sequence analysis of calf cDNA and human genomic DNA encoding -subunit precursor of muscle acetylcholine receptor. Nature 305, 818-823.
  5. Numa, S., Noda, M., Takahashi, H., Tanabe T., Toyosato, M., Furutani, Y. & Kikyotani, S. (1983) Molecular structure of the nicotinic acetylcholine receptor. Cold Spring Harbor Symp. Quant. Biol. 48, 57-69.
  6. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M. & Numa, S. (1984) Expression of functional acetylcholine receptor from cloned cDNAs. Nature 307, 604-608.
  7. Takai, T., Noda, M., Furutani, Y., Takahashi, H., Notake, M., Shimizu, S., Kayano, T., Tanabe, T., Tanaka, K., Hirose, T., Inayama, S. & Numa, S. (1984) Primary structure of -subunit precursor of calf-muscle acetylcoline receptor deduced from the cDNA sequence. Eur. J. Biochem. 143, 109-115.
  8. Tanabe, T., Noda, M., Furutani, Y., Takai, T., Takahashi, H., Tanaka, K., Hirose, T., Inayama, S. & Numa, S. (1984) Primary structure of -subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem. 144, 11-17.
  9. Shibahara, S., Kubo, T., Perski, H.J., Takahashi, H., Noda, M. & Numa, S. (1985) Cloning and sequence analysis of human genomic DNA encoding -subunit precursor of muscle acetylcholine receptor. Eur. J. Biochem. 146, 15-22.
  10. Kubo, T., Noda, M., Takai, T., Tanabe, T., Kayano, T., Shimizu, S., Tanaka, K., Takahashi, H., Hirose, T., Inayama, S., Kikuno, R., Miyata, T. & Numa, S. (1985) Primary structure of -subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem. 149, 5-13.
  11. Takai, T., Noda, M., Mishina, M., Shimizu, S., Furutani, Y., Kayano, T., Ikeda, T., Kubo, T., Takahashi, H., Takahashi, T., Kuno, M. & Numa, S. (1985) Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315, 761-764.
  12. Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C. & Sakmann, B. (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406-411.


  1. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, T., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121-127.
  2. Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H. & Numa, S. (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320, 188-192.
  3. Numa, S. & Noda, M. (1986) Molecular structure of sodium channels. Ann. N. Y. Acad. Sci. 479, 338-355.
  4. Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M. & Numa, S. (1986) Expression of functional sodium channels from cloned cDNA. Nature 322, 826-828.
  5. Noda, M. & Numa, S. (1987) Structure and function of sodium channel. J. Receptor Res. 7, 467-497.
  6. St?hmer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. (1987) Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur. Biophys. J. 14, 131-138.
  7. Kayano, T., Noda, M., Flockerzi, V., Takahashi, H. & Numa, S. (1988) Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett. 228, 187-194.
  8. Suzuki, H., Beckh, S., Kubo, H., Yahagi, N., Ishida, H., Kayano, T., Noda, M. & Numa, S. (1988) Functional expression of cloned cDNA encoding sodium channel III. FEBS Lett. 228, 195-200.
  9. St?hmer, W., Conti, F., Suzuki, H., Wang, X. a Noda, M., Yahagi, N., Kubo, H. & Numa, S. (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339, 597-603.
  10. Beckh, S., Noda, M., Lubbert, H. & Numa, S. (1989) Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J. 8, 3611-3616.
  11. Noda, M., Suzuki, H., Numa, S. & St?hmer, W. (1989) A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 259, 213-216.
  12. Pusch, M., Noda, M., St?hmer, W., Numa, S. & Conti, F. (1991) Single point mutations of the sodium channel drastically reduce the pore permeability without preventing its gating. Eur. Biophys. J. 20, 127-133.
  13. Noda, M. (1993) Structure and function of sodium channels. Ann. N. Y. Acad. Sci. 707, 20-37.
  14. Sugawara, T., Tsurubuchi, Y., Agarwala, K. L., Ito, M., Fukuma, G., Mazaki-Miyazaki, E., Nagafuji, H., Noda, M., Imoto, K., Wada, K., Mitsudome, A., Kaneko, S., Montal, M., Nagata, K., Hirose, S. & Yamakawa, K. (2001) A missense mutation of the Na+ channel II subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc. Natl. Acad. Sci. USA 98, 6384-6389.

  1. Watanabe, E., Fujikawa, A., Matsunaga, H., Yasoshima, Y., Sako, N., Yamamoto, T., Saegusa, C. & Noda, M. (2000) Nav2/NaG channel is involved in control of salt intake behavior in the central nervous system. J. Neurosci. 20, 7743-7751.
  2. Goldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., Hunter, J. C., Kallen, R. G., Mandel, G., Meisler, M. H., Netter, Y. B., Noda, M., Tamkun, M. M., Waxman, S. G., Wood, J. N. & Catterall, W. A. (2000) Nomenclature of voltage-gated sodium channels. Neuron 28, 365-368.
  3. Hiyama, T.Y., Watanabe, E., Ono, K., Inenaga, K., Tamkun, M.M., Yoshida, S. & Noda, M. (2002) Nax is involved in the sodium level sensing in the CNS. Nature Neurosci. 5, 511-512.
  4. Watanabe, E., Hiyama, T.Y., Kodama, R. & Noda, M. (2002) Nax sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice. Neurosci. Lett. 330, 109-113.
  5. Watanabe, U., Shimura, T., Sako, N., Kitagawa, J., Shingai, T., Watanabe, E., Noda, M. & Yamamoto, T. (2003) A comparison of voluntary salt-intake behavior in Nax-gene deficient and wild-type mice with reference to peripheral taste inputs. Brain Res. 967, 247-256.
  6. Hiyama, T.Y., Watanabe, E., Okado, H. & Noda, M. (2004) The subfornical organ is the primary locus of sodium-level sensing by Nax sodium channels for the control of salt-intake behavior. J. Neurosci. 24, 9276-9281.
  7. Noda, M. & Hiyama, T.Y. (2005) Sodium-level-sensitive sodium channel and salt-intake behavior. Chem. Senses 30 (Supple. 1), i44-i45.
  8. Noda, M. (2006) The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain. The Neuroscientist 12, 80-91.
  9. Watanabe, E., Hiyama, T.Y., Shimizu, H., Kodama, R., Hayashi, N., Miyata, S., Yanagawa, Y., Obata, K. & Noda, M. (2005) Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs. Am. J. Physiol. - Regul. Integr. Comp. Physiol. 290, R568-R576.
  10. Shimizu, H., Watanabe, E., Hiyama, T.Y., Nagakura, A., Fujikawa, A., Okado, H., Yanagawa, Y.,Obata, K. & Noda, M. (2007) Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing. Neuron 54, 59-72.
  11. Noda, M. (2007) Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain. Exp. Physiol. 92, 513-522
  12. Nagakura, A., Hiyama, T.Y. & Noda, M. (2010) Nax-deficient mice show normal vasopression response to dehydration. Neurosci. Lett. 472, 161-165.
  13. Hiyama, T.Y., Matsuda, S, Fujikawa, A., Matsumoto, M., Watanabe, E., Kajiwara, H., Niimura, F. & Noda, M. (2010) Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia. Neuron 66, 508-522.
  14. Nishihara, E., Hiyama, T.Y. & Noda, M. (2011) Osmosensitivity of transient receptor potential vanilloid 1 is synergistically enhanced by distinct activating stimuli such as temperature and protons. PLoS ONE 6, e22246.
  15. Matsumoto, M., Fujikawa, A., Suzuki, R., Shimizu, H., Kuboyama, K., Hiyama, T.Y., Hall, R.A. & Noda, M. (2012) SAP97 promotes the stability of Nax channels at the plasma membrane. FEBS Lett. 586, 3805-3812.
  16. Hiyama, T.Y., Yoshida, M., Matsumoto, M., Suzuki, R., Matsuda, T., Watanabe, E., & Noda, M. (2013) Endothelin-3 Expression in the Subfornical Organ Enhancesx the Sensitivity of Nax, the Brain Sodium-Level Sensor, to Suppress Salt Intake. Cell Metabol. 17, 507-519
  17. Noda, M. & Sakuta, H. (2013) Central regulation of body-fluid homeostasis. Trends in Neuroscience 36, 661-673.
  18. Unezaki, S., Katano, T., Hiyama, T.Y., Tu, N.H., Yoshii, S., Noda, M. & Ito, S. (2014) Involvement of Nax sodium
    channel in peripheral nerve regeneration via lactate signaling. Eur. J. Neurosci. 39, 720-729.
  19. Noda, M. and Hiyama, T.Y. (2015) The Nax Channel: What It Is and What It Does. Neuroscientist
    21, 399-412.
  20. Noda, M. and Hiyama, T.Y. (2015) Sodium sencing in the brain. Pflugers Arch. 467, 465-474.
  21. Matsumoto, M., Hiyama, T.Y., Kuboyama, K., Suzuki, R., Fujikawa, A. and Noda, M. (2015) Channel properties of Nax expressed in neurons. PLOS ONE, 10, e0126109.
  22. Sakuta, H., Nishihara, E., Hiyama, T.Y., Lin, C.H. and Noda, M. (2016) Nax signaling evoked by an increase in [Na+] inCSF induces water intake via EET-mediated TRPV4 activation. Am. J. Physiol. Regul. Integrat. Comparat. Physiol. , in press.
  23. Doura, T., Kamiya, M., Obata, F., Yamaguchi, Y., Hiyama, T.Y., Matsud,a T., Fukamizu, A., Noda, M., Miura, M. and Urano, Y. (2016)Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ. Brain Pthol. , in press.
  24. Hiyama TY, Utsunomiya AN, Matsumoto M, Fujikawa A, Lin CH, Hara K, Kagawa R, Okada S, Kobayashi M, Anzo M, Cho H, Takayasu S, Nigawara T, Daimon M, Sato T, Terui K, Ito E and Noda M. (2016)Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ. Brain Pthol. , in press.
  25. Hiyama, T.Y., Utsunomiya, A.N., Matsumoto, M., Fujikawa, A., Lin, C.H., Hara, K., Kagawa, R., Okada, S., Kobayashi, M., Anzo, M., Cho, H., Takayasu, S., Nigawara, T., Daimon, M., Sato, T., Terui, K., Ito, .E and Noda, M. (2016)Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ. Brain Pthol. , in press.

  1. Yuasa, J., Hirano, S., Yamagata, M. & Noda, M. (1996) Visual projection map specified by expression of transcription factors in the retina. Nature 382, 632-635.
  2. Noda, M., Yamagata, M., Yuasa, J. & Takahashi, M. (1997) Topographic and laminar connection in the chick retinotectal system. In Molecular basis of axon growth and nerve pattern formation (H. Fujisawa, ed.) pp. 197-214. Japan Scientific Societies Press, Tokyo.
  3. Yamagata, M., Mai, A., Pollerberg, G.E. & Noda, M. (1999) Regulatory interrelations among topographic molecules CBF1, CBF2 and EphA3 in the developing chick retina. Dev. Growth Differ. 41, 575-587.
  4. Suzuki, R., Shintani, T., Sakuta, H., Kato, A., Ohkawara, T., Osumi, N. & Noda, M. (2000) Identification of RALDH-3, a novel retinaldehyde dehydrogenase, expressed in ventral region of the retina. Mech. Develop. 98, 37-50.
  5. Sakuta, H., Suzuki, R., Takahashi, H., Kato, A., Shintani, T., Iemura, S.H., Yamamoto, T.S., Ueno, N. & Noda M. (2001) Ventroptin: A BMP-4 antagonist expressed in a double-gradient pattern in the retina. Science 293, 111-115.
  6. Takahashi, H., Shintani, T., Sakuta, H. & Noda, M. (2003) CBF-1 controls the retinotectal topographic map along the anteroposterior axis through multiple mechanisms. Development 130, 5203-5215.
  7. Shintani, T., Kato, A., Yuasa-Kawada, J., Sakuta, H., Takahashi, M., Suzuki, R., Ohkawara, T., Takahashi, H. & Noda, M. (2004) Large-scale identification and characterization of genes with asymmetric expression patterns in the developing chick retina. J. Neurobiol. 59, 34-47.
  8. Ohkawara, T., Shintani, T., Saegusa, C., Yuasa-Kawada, J., Takahashi, M. & Noda, M. (2004) A novel basic helix-loop-helix (bHLH) transcriptional repressor, NeuroAB, expressed in bipolar and amacrine cells in the chick retina. Mol. Brain Res. 128, 58-74.
  9. Sakuta, H., Takahashi, H., Shintani, T., Etani, K., Aoshima, A. & Noda, M. (2006) Role of bone morphogenic protein 2 in retinal patterning and retinotectal projection. J. Neurosci. 26, 10868-10878.
  10. Yonehara, K., Shintani, T., Suzuki, R., Sakuta, H., Takeuchi, Y., Nakamura-Yonehara, K. & Noda, M. (2008) Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse. PLoS ONE 3, e1533.
  11. Sakuta, H., Suzuki, R. & Noda, M. (2008) Retrovirus vector-mediated gene transfer into the chick optic vesicle by in ovo electroporation. Dev. Growth Differ. 50, 453-457.
  12. Noda, M., Takahashi, H. & Sakuta, H. (2009) Neural Patterning: Eye Fields. In Encyclopedia of Neuroscience pp. 199-204.
  13. Yonehara, K., Ishikane, H., Sakuta, H., Shintani, T., Nakamura-Yonehara, K. Kamiji, N.L., Usui, S. & Noda, M. (2009) Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLoS ONE 4, e4320.
  14. Takahashi, H., Sakuta, H., Shintani, T. & Noda, M. (2009) Functional mode of FOXD1/CBF2 for the extablishmentof temporal retinal specificity in the developing chick retina. Dev. Biol. 331, 300-310.
  15. Yonehara, K., Balint, K., Noda, M., Nagel, G., Bamberg, E. & Roska, B. (2010) Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature 469, 407-410.
  16. Yonehara, K, Farrow, K, Ghanem, A, Hillier, D, Balint, K, Teixeira, M, Juettner, J, Noda, M, Neve, RL, Conzelmann, KK, Roska, B. (2013) The First Stage of Cardinal Direction Selectivity Is Localized to the Dendrites of Retinal Ganglion Cells. Neuron 79, 1078-1085.
  17. Sun, L.O., Brady, C.M., Cahill, H., Al-Khindi, T., Sakuta, H., Dhande, O.S., Noda, M., Huberman, A.D., Nathans, J., Kolodkin, A.L.
    (2015) Functional assembly of accessory optic system circuitry critical for compensatory eye movements. Neuron 86,
    971-984.

  1. Drescher, U., Kremoser, C., Handwerker, C., Loschinger, J., Noda, M. & Bonhoeffer, F. (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359-370.
  2. Takahashi, M., Yamagata, M. & Noda, M. (1999) Specific expression of ezrin, a cytoskeletal-membrane linker protein, in a subset of chick retinotectal and sensory projections. Eur. J. Neurosci. 11, 545-558.
  3. Fukada, M., Watakabe, I., Yuasa-Kawada, J., Kawachi, H., Kuroiwa, A., Matsuda, Y. & Noda, M. (2000) Molecular characterization of CRMP5, a novel member of the collapsin response mediator protein family. J. Biol. Chem. 275, 37957-37965.
  4. Zubair, M., Watanabe, E., Fukada, M. & Noda M. (2002) Genetic labelling of specific axonal pathways in the mouse central nervous system. Eur. J. Neurosci. 15, 807-814.
  5. Yuasa-Kawada, J., Suzuki, R., Kano, F., Ohkawara, T., Murata, M. & Noda, M. (2003) Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Eur. J. Neurosci. 17, 2329-2343.
  6. Shintani, T., Ihara, M., Sakuta, H., Takahashi, H., Watakabe, I. & Noda, M. (2006) Eph receptors are negatively controlled by protein tyrosine phosphatase receptor type O. Nature Neurosci. 9, 761-769.
  7. Shintani, T., Ihara, M., Tani, S., Sakuraba, J., Sakuta, H. & Noda, M. (2009) APC2 plays an essential role in axonal projections through the regulation of microtubule stability. J. Neurosci. 29, 11628-1164.
  8. Shintani, T., Takeuchi, Y., Fujikawa, A. & Noda, M. (2012) Directional neuronal migration is impaired in mice lacking adenomatous polyposis coli 2. J. Neurosci. 32, 6468-6484.
  9. Suzuki, R., Matsumoto, M., Fujikawa, A., Kato, A., Kuboyama, K., Yonehara, K., Shintani, T., Sakuta, H., Noda, M.
    (2014) SPIG1 negatively regulates BDNF maturation. J. Neurosci. 34, 3429-3442.
  10. Almuriekhi M*, Shintani T*, Fahiminiya S*, Fujikawa A, Kuboyama K, Takeuchi Y, Nawaz Z, Nadaf J, Kamel H,
    Kitam AK, Samiha Z, Mahmoud L, Ben-Omran T, Majewski J, Noda, M. (2015) Loss of Function Mutation in APC2
    Causes Sotos Syndrome Features. Cell Repotrs 10, 1585?1598.@*Co-first authors

  1. Maeda, N., Hamanaka, H., Shintani, T, Nishiwaki, T. & Noda, M. (1994) Multiple receptor-like protein tyrosine phosphatases in the form of chondroitin sulfate proteoglycan. FEBS Lett. 354, 67-70.
  2. Maeda, N., Hamanaka, H., Oohira, A. & Noda, M. (1995) Purification, characterization and developmental expression of a brain-specific chondroitin sulfate proteoglycan, 6B4 proteoglycan/phosphacan. Neuroscience 67, 23-35.
  3. Maeda, N. & Noda, M. (1996) 6B4 proteoglycan/phosphacan is a repulsive substratum but promotes morphological differentiation of cortical neurons. Development 122, 647-658.
  4. Nishizuka, M., Ikeda, S., Arai, Y., Maeda, N. & Noda, M. (1996) Cell surface-associated extracellular distribution of a neural proteoglycan, 6B4 proteoglycan/phosphacan, in the olfactory epithelium, olfactory nerve, and cells migrating along the olfactory nerve in chick embryos. Neurosci. Res. 24, 345-355.
  5. Maeda, N., Nishiwaki, T., Shintani, T., Hamanaka, H. & Noda, M. (1996) 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase /RPTP, binds pleiotrophin/HB-GAM. J. Biol. Chem. 271, 21446-21452.
  6. Shintani, T., Maeda, N., Nishiwaki, T. & Noda, M. (1997) Characterization of rat receptor-like protein tyrosine phosphatase isoforms. Biochem. Biophys. Res. Comm. 230, 419-425.
  7. Hamanaka, H., Maeda, N. & Noda, M. (1997) Spatially and temporally regulated modification of the receptor-like protein tyrosine phosphatase / isoforms with keratan sulfate in the developing chick brain. Eur. J. Neurosci. 9, 2297-2308.
  8. Nishiwaki, T., Maeda, N. & Noda, M. (1998) Characterization and developmental regulation of proteoglycan-type protein tyrosine phosphatase /RPTP isoforms. J. Biochem. 123, 458-467.
  9. Shintani, T., Watanabe, E., Maeda, N. & Noda, M. (1998) Neurons as well as astrocytes express proteoglycan-type protein tyrosine phosphatase /RPTP: analysis of mice in which the PTP/RPTP gene was replaced with the LacZ gene. Neurosci. Lett. 247, 135-138.
  10. Maeda, N. & Noda, M. (1998) Involvement of receptor-like protein tyrosine phosphatase /RPTP and its ligand pleiotrophin/heparin-binding growth-associated molecule (HB-GAM) in neuronal migration. J. Cell Biol. 142, 203-216.
  11. Nishiwaki, T., Maeda, N. & Noda, M. (1999) Characterization and developmental regulation of proteoglycan-type protein tyrosine phosphatase /RPTP isoforms. In Neural Development, Keio University Symposia for Life Science and Medicine, vol. 2 (K. Uyemura, K. Kawamura & T. Yazaki, eds.) pp. 291-297. Springer-Verlag Tokyo.
  12. Maeda, N., Ichihara-Tanaka, K., Kimura, T., Kadomatsu, K., Muramatsu, T. & Noda, M. (1999) A receptor-like protein-tyrosine phosphatase PTP/RPTP binds a heparin-binding growth factor midkine: Involvement of arginine 78 of midkine in the high affinity binding to PTP. J. Biol. Chem. 274, 12474-12479.
  13. Revest, J.-M., Faivre-Sarrailh, C., Maeda, N., Noda, M., Schachner, M. & Rougon, G. (1999) The interaction between F3 immunoglobulin domains and protein tyrosine phosphatase / triggers bidirectional signalling between neurons and glial cells. Eur. J. Neurosci. 11, 1134-1147.
  14. Kawachi, H., Tamura, H., Watakabe, I., Shintani, T., Maeda, N. & Noda, M. (1999) Protein tyrosine phosphatase /RPTP interacts with PSD-95/SAP90 family. Mol. Brain Res. 72, 47-54.
  15. Yamakawa, T., Kurosawa, N., Kadomatsu, K., Matsui, T., Itoh, K., Maeda, N., Noda, M. & Muramatsu, T. (1999) Levels of expression of pleiotrophin and protein tyrosine phosphatase are decreased in human colorectal cancers. Cancer Lett. 135, 91-96.
  16. Meng, K., Rodriguez-Pe?a, A., Dimitrov, T., Chen, W., Yamin, M., Noda, M. & Deuel, T.F. (2000) Pleiotrophin signals increased tyrosine phosphorylation of -catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase /. Proc. Natl. Acad. Sci. USA 97, 2603-2608.
  17. Shintani, T., Maeda, N. & Noda, M. (2001) Receptor-like protein tyrosine phosphatase (RPTP), but not PTP/RPTP, inhibits NGF-induced neurite outgrowth in PC12D cells. Dev. Neurosci. 23, 55-69.
  18. Qi, M., Ikematsu, S., Maeda, N., Ichihara-Tanaka, K., Sakuma, S., Noda, M., Muramatsu, T. & Kadomatsu, K. (2001) Haptotactic migration by midkine: Involvement of protein-tyrosine phosphatase , mitogen-activated protein kinase and phosphatidylinositol 3-kinase. J. Biol. Chem. 276, 15868-15875.
  19. Kawachi, H., Fujikawa, A., Maeda, N. & Noda, M. (2001) Identification of GIT1/Cat-1 as a substrate molecule of protein tyrosine phosphatase / by the yeast substrate-trapping system. Proc. Natl. Acad. Sci. USA 98, 6593-6598.
  20. Thomaidou, D., Coquillat, D., Meintanis, S., Noda, M., Rougon, G. & Matsas, R. (2001) Soluble forms of NCAM and F3 neuronal cell adhesion molecules promote Schwann cell migration: identification of protein tyrosine phosphatases / as the putative F3 receptors on Schwann cells. J. Neurochem. 78, 767-778.
  21. Tanaka, M., Maeda, N., Noda, M. & Marunouchi, T. (2003) A chondroitin sulfate proteoglycan PTP/RPTP regulates the morphogenesis of Purkinje cell dendrites in the developing cerebellum. J. Neurosci. 23, 2804-2814.
  22. Fujikawa, A., Shirasaka, D., Yamamoto, S., Ota, H., Yahiro, K., Fukada, M., Shintani, T., Wada, A., Aoyama, N., Hirayama, T., Fukamachi, H. & Noda, M. (2003) Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nature Genetics 33, 375-381.
  23. Sakaguchi, N., Muramatsu, H., Ichihara-Tanaka, K., Maeda, N., Noda, M., Yamamoto, T., Michikawa, M., Ikematsu, S., Sakuma, S. & Muramatsu, T. (2003) Receptor-type protein tyrosine phosphatase as a component of the signaling receptor complex for midkine-dependent survival of embryonic neurons. Neurosci. Res. 45, 219-224.
  24. Asahi, M., Tanaka, Y., Izumi, T., Ito, Y., Naiki, H., Kersulyte, D., Tsujikawa, K., Saito, M., Sada, K., Yanagi, S., Fujikawa, A., Noda, M. & Itokawa, Y. (2003) Helicobacter pylori CagA containing ITAM-like sequences localized to lipid rafts negatively regulates VacA-induced signaling in vivo. Helicobacter 8, 1-14.
  25. Nakayama, M., Kimura, M., Wada, A., Yahiro, K., Ogushi, K.I., Niidome, T., Fujikawa, A., Shirasaka, D., Aoyama, N., Kurazono, H., Noda, M., Moss, J. & Hirayama, T. (2004) Helicobacter pylori VacA activates the p38/ATF-2-mediated signal pathway in AZ-521 cells. J. Biol. Chem. 279, 7024-7028.
  26. Ohyama, K., Ikeda, E., Kawamura, K., Maeda, N. & Noda, M. (2004) Receptor-like protein tyrosine phosphatase /RPTP is expressed on tangenially aligned neurons in early mouse neocortex. Develop. Brain Res. 148, 121-127.
  27. Muramatsu, H., Zou, P., Suzuki, H., Oda, Y., Chen, G.Y., Sakaguchi, N., Sakuma, S., Maeda, N., Noda, M. & Takada, Y. & Muramatsu, T. (2004) 41- and 61-integrins are functional receptors for midkine, a heparin-binding growth factor. J. Cell Sci. 117, 5405-5415.
  28. Fukada, M., Kawachi, H., Fujikawa, A. & Noda, M. (2005) Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases: isolation of substrates for protein tyrosine phosphatase receptor type z. Methods 35, 54-63.
  29. Niisato, K., Fujikawa, A., Komai, S., Shintani, T., Watanabe, E., Sakaguchi, G., Katsuura, G., Manabe, T. & Noda, M. (2005) Age-dependent enhancement of hippocampal long-term potentiation and impairment of spatial learning through the Rho-associated kinase pathway in protein tyrosine phosphatase receptor type z-deficient mice. J. Neurosci. 25, 1081-1088.
  30. Fukada, M. & Noda, M. (2006) Yeast substrate-trapping system for isolating substrates of protein tyrosine phosphatases. Methods in Mol. Biol. 365, 371-382.
  31. Tamura, H., Fukada, M., Fujikawa, A. & Noda, M. (2006) Protein tyrosine phosphatase receptor type Z is involved in hippocampus-dependent memory formation through dephosphorylation at Y1105 on p190 RhoGAP. Neurosci. Lett. 399, 33-38.
  32. Fukuda, M., Fujikawa, A., Chow, J.P., Ikematsu, S., Sakuma, S. & Noda, M. (2006) Protein tyrosine phosphatase receptor type Z is inactivated by ligand-induced oligomerization. FEBS Lett. 580, 4051-4056.
  33. Fujikawa, A., Chow, J.P., Shimizu, H., Fukada, M., Suzuki, R. & Noda, M. (2007) Tyrosine phosphorylation of ErbB4 is enhanced by PSD95 and repressed by protein tyrosine phosphatase receptor type z. J. Biochem. (Tokyo) 142, 343-350.
  34. Shintani, T. & Noda, M. (2008) Protein tyrosine phosphatase receptor type z dephosphorylates TrkA receptors and attenuates NGF-dependent neurite outgrowth of PC12 cells. J. Biochem. 144, 259-266.
  35. Chow, J.P., Fujikawa, A., Shimizu, H. & Noda, M. (2008) Plasmin-mediated processing of protein tyrosine phosphatase receptor type Z in the mouse brain. Neurosci. Lett. 442, 208-212.
  36. Chow, J.P., Fujikawa, A., Shimizu, H., Suzuki, R. & Noda, M. (2008) Metalloproteinase- and -secretase-mediated cleavage of protein tyrosine phosphatase receptor type Z. J. Biol. Chem. 283, 30879-30889.
  37. Toychiev, A., Sabirov, R., Takahashi, N., Ando-Akatsuka, Y., Liu, H., Shintani, T., Noda, M. & Okada, Y. (2009) Activation of the maxi-anion channel by protein tyrosine dephosphorylation. Am. J. Physiol. Cell Physiol. 297, C990-C1000.
  38. Chagnon, M.J., Wu, C.L., Nakazawa, T., Yamamoto, T., Noda, M., Blanchetot, C. & Tremblay, M.L. (2010) Receptor tyrosine phosphatase (RPTP) regulates, p250GAP, a novel substrate that attenuates Rac signaling. Cell. Signal. 22, 1626-1633.
  39. Nayak, G., Goodyear, R.J., Legan, P.K., Noda, M. & Richardson, G.P. (2011) Evidence for multiple, developmentally regulated isoforms of Ptprq on hair cells of the inner ear. Dev. Neurobiol. 71, 129-141.
  40. Sakamoto, K., Bu, G., Chen, S., Takei, Y., Hibi, K., Kodera, Y., McCormick, L.M., Nakao, A., Noda, M., Muramatsu, T. & Kadomatsu, K. (2011) The premature ligand-receptor interaction during biosynthesis limits the production of growth factor midkine and its receptor LDL receptor-related protein 1(LRP1). J. Biol. Chem. 286, 8405-8413.
  41. Fujikawa, A., Fukada, M., Makioka, Y., Suzuki, R., Chow, J.P., Matsumoto, M. & Noda, M. (2011) Consensus substrate sequence for protein-tyrosine phosphatase receptor type Z. J. Biol. Chem. 286, 37137-37146.
  42. Kuboyama, K., Fujikawa, A., Masumura, M., Suzuki, R., Matsumoto, M. & Noda, M. (2012) Protein Tyrosine phosphatase receptor type Z negatively regulates oligodendrocyte differentiation and myelination. PLoS ONE 7, e48797.
  43. Sakuraba, J., Shintani, T., Tani, S. & Noda, M. (2013) Substrate specificity of R3 receptor-like protein tyrosine
    phosphatase subfamily towards receptor protein tyrosine kinases. J. Biol. Chem. 288, 23421-23431.
  44. Ayoub, E., Hall, A., Scott, A.M,. Chagnon, M.M., Miquel, G., Halle, M., Noda, M., Bikflavi., A. & Tremblay, M.L. (2013)
    Regulation of the Src Kinase-Associated Phosphoprotein 55 Homologue by the protein tyrosine
    phosphatase PTP-PEST in the control of cell motility. J. Biol. Chem. 288, 25739-25748.
  45. Fujikawa, A., Matsumoto, M., Kuboyama, K., Suzuki, R., Noda, M. (2015) Specific dephosphorylation at tyr-554 of git1
    by ptprz promotes its association with paxillin and hic-5. PloS One 10(3):e0119361.
  46. Shintani, T., Higashi, S., Takeuchi, Y., Gaudio, E., Trapasso, F., Fusco, A. & Noda, M.
    The R3 receptor-like protein-tyrosine phosphatase subfamily inhibits insulin signaling by dephosphorylating the insulin
    receptor at specific sites. J. Biochem. 158, 235-243.
  47. Kuboyama, K., Fujikawa, A., Suzuki, R., and Noda, M. (2015) Inactivation of protein tyrosine phosphatase receptor type Z by pleiotrophin promotes remyelination through activation of differentiation of oligodendrocyte precursor cells. J. Neurosci., 35, 12162-12171.
  48. Fujikawa A, Nagahira A, Sugawara H, Ishii K, Imajo S, Matsumoto M,Kuboyama K, Suzuki R,Tanga N,Noda M, Uchiyama S, Tomoo T, Ogata A, Masumura M, Noda, M. (2016) Small-molecule inhibition of PTPRZ reduces tumor growth in a rat model of glioblastoma. Sci. Report 6:20473. doi: 10.1038/srep20473.
  • Kumoyama, K, Fujikawa A, Suzuki R,Tanga N and Noda, M. (2016) Role of Chondroitin Sulfate (CS) Modification in the Regulation of Protein Tyrosine Phosphatase Receptor Type Z (PTPRZ) Activity:PLEIOTROPHIN-PTPRZ-A SIGNALING IS INVOLVED IN OLIGODENDROCYTE DIFFERENTIATION J. Biol. Chem. in press.

    1. Tanabe, T., Nukada, T., Nishikawa, Y., Sugimoto, K., Suzuki, H., Takahashi, H., Noda, M., Haga, T., Ichiyama, A., Kangawa, K., Minamino, N., Matsuo, H. & Numa, S. (1985) Primary structure of the -subunit of transducin and its relationship to ras proteins. Nature 315, 242-245.
    2. Kawakami, K., Noguchi, S., Noda, M., Takahashi, H., Ohta, T., Kawamura, M., Nojima, H., Nagano, K., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1985) Primary structure of the -subunit of Torpedo calfornica (Na+ + K+)-ATPase deduced from cDNA sequence. Nature 316, 733-736.
    3. Sugimoto, K., Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Minamino, N., Kangawa, K., Matsuo, H., Hirose, T., Inayama, S. & Numa, S. (1985) Primary structure of the -subunit of bovine transducin deduced from the cDNA sequence. FEBS Lett. 191, 235-240.
    4. Noguchi, S., Noda, M., Takahashi, H., Kawakami, K., Ohta, T., Nagano, K., Hirose, T., Inayama, S., Kawamura, M. & Numa, S. (1986) Primary structure of the -subunit of Torpedo californica (Na+ + K+)-ATPase deduced from the cDNA sequence. FEBS Lett. 196, 315-320.
    5. Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Hirose, T., Inayama, S. & Numa, S. (1986) Primary structure of the -subunit of bovine adenylate cyclase-stimulating G-protein deduced from the cDNA sequence. FEBS Lett. 195, 220-224.
    6. Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Haga, K., Haga, T., Ichiyama, A., Kangawa, K., Hiranaga, M., Matsuo, H. & Numa, S. (1986) Primary structure of the -subunit of bovine adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence. FEBS Lett. 197, 305-310.
    7. Watanabe, E., Maeda, N., Matsui, F., Kushima, Y., Noda, M. & Oohira, A. (1995) Neuroglycan C, a novel membrane-spanning chondroitin sulfate proteoglycan that is restricted to the brain. J. Biol. Chem. 270, 26876-26882.
    8. Watanabe, E., Matsui, F., Keino, H., Ono, K., Kushima, Y., Noda, M. & Oohira, A. (1996) A membrane-bound heparan sulfate proteoglycan that is transiently expressed on growing axons in the rat brain. J. Neurosci. Res. 44, 84-96.
    9. Yamagata, M. & Noda, M. (1998) The winged-helix transcription factor CWH-3 is expressed in developing neural crest cells. Neurosci. Lett. 249, 1-4.
    10. Sugitani, K., Matsunaga, T., Koriyama, Y., Shintani, T., Nakamura, T., Noda, M. & Kato, S. (2006) Upregulation of retinal transglutaminase during the axonal elongation stage of goldfish optic nerve regeneration. Neuroscience 142, 1081-1092.
    11. Tsuboi, N., Utsunomiya, T., Roberts, R.L., Ito, H., Takahashi, K., Noda, M. & Takahashi, T. (2008) The tyrosine phosphatase CD148 interacts with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem. J. 413, 193-200.
    12. Sugitani, K., Ogai, K., Hitomi, K., Nakamura-Yonehara, K., Shintani, T., Noda, M., Koriyama, Y., Tanii, H., Matsukawa, T. & Kato, S. (2012) A distinct effect of transient and sustained upregulation of cellular factor XIII in the goldfish retina and optic nerve regeneration. Neurochem. Int. 61, 423-432.