HOME

Publications:

 1. Nakanishi, S., Teranishi, Y., Noda, M., Notake, M., Watanabe, Y., Kakidani, H., Jingami, H. &
  Numa, S. (1980) The protein-coding sequence of the bovine ACTH-β-LPH precursor gene is
  split near the signal peptide region. Nature 287, 752-755.
 2. Nakanishi, S., Teranishi, Y., Watanabe, Y., Notake, M., Noda, M., Kakidani, H., Jingami, H. &
  Numa, S. (1981) Isolation and characterization of the bovine corticotropin/β-lipotropin
  precursor gene. Eur. J. Biochem. 115, 429-438.
 3. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Hirose, T., Inayama, S., Nakanishi, S. &
  Numa, S. (1982) Cloning and sequence analysis of cDNA for bovine adrenal prepro-
  enkephalin. Nature 295, 202-206.
 4. Noda, M., Teranishi, Y., Takahashi, H., Toyosato, M., Notake, M., Nakanishi, S. & Numa, S.
  (1982) Isolation and structural organization of the human preproenkephalin gene. Nature
  297, 431-434.
 5. Kakidani, H., Furutani, Y., Takahashi, H., Noda, M., Morimoto, Y., Hirose, T., Asai, M.,
  Inayama, S., Nakanishi, S. & Numa, S. (1982) Cloning and sequence analysis of cDNA for
  porcine β-neo-endorphin/dynorphin precursor. Nature 298, 245-249.
 6. Furutani, Y., Morimoto, Y., Shibahara, S., Noda, M., Takahashi, H., Hirose, T., Asai, M.,
  Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1983) Cloning and sequence analysis of
  cDNA for bovine corticotropin-releasing factor precursor. Nature 301, 537-540.
 7. Horikawa, S., Takai, T., Toyosato, M., Takahashi, H., Noda, M., Kakidani, H., Kubo, T., Hirose,
  T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1983) Isolation and structural
  organization of the human preproenkephalin B gene. Nature 306, 611-614.

 1. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama,
  S., Miyata, T. & Numa, S. (1982) Primary structure of α-subunit precursor of Torpedo
  californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793-797.
 2. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M.,
  Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983) Primary structures of β- and
  γ-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA
  sequences. Nature 301, 251-255.
 3. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T.,
  Takashima, H., Inayama, S., Miyata, T. & Numa, S. (1983) Structural homology of Torpedo
  californica acetylcholine receptor subunits. Nature 302, 528-532.
 4. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotaini, S.,
  Kayano, T., Hirose, T., Inayama, S. & Numa, S. (1983) Cloning and sequence analysis of
  calf cDNA and human genomic DNA encoding α-subunit precursor of muscle acetylcholine
  receptor. Nature 305, 818-823.
 5. Numa, S., Noda, M., Takahashi, H., Tanabe T., Toyosato, M., Furutani, Y. & Kikyotani, S.
  (1983) Molecular structure of the nicotinic acetylcholine receptor. Cold Spring Harbor
  Symp. Quant. Biol. 48, 57-69.
 6. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M.,
  Lindstrom, J., Takahashi, T., Kuno, M. & Numa, S. (1984) Expression of functional
  acetylcholine receptor from cloned cDNAs. Nature 307, 604-608.
 7. Takai, T., Noda, M., Furutani, Y., Takahashi, H., Notake, M., Shimizu, S., Kayano, T., Tanabe,
  T., Tanaka, K., Hirose, T., Inayama, S. & Numa, S. (1984) Primary structure of γ-subunit
  precursor of calf-muscle acetylcoline receptor deduced from the cDNA sequence. Eur. J.
  Biochem. 143, 109-115.
 8. Tanabe, T., Noda, M., Furutani, Y., Takai, T., Takahashi, H., Tanaka, K., Hirose, T., Inayama, S.
  & Numa, S. (1984) Primary structure of β-subunit precursor of calf muscle acetylcholine
  receptor deduced from cDNA sequence. Eur. J. Biochem. 144, 11-17.
 9. Shibahara, S., Kubo, T., Perski, H.J., Takahashi, H., Noda, M. & Numa, S. (1985) Cloning and
  sequence analysis of human genomic DNA encoding γ-subunit precursor of muscle
  acetylcholine receptor. Eur. J. Biochem. 146, 15-22.
10. Kubo, T., Noda, M., Takai, T., Tanabe, T., Kayano, T., Shimizu, S., Tanaka, K., Takahashi, H.,
  Hirose, T., Inayama, S., Kikuno, R., Miyata, T. & Numa, S. (1985) Primary structure of
  γ-subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence.
  Eur. J. Biochem. 149, 5-13.
11. Takai, T., Noda, M., Mishina, M., Shimizu, S., Furutani, Y., Kayano, T., Ikeda, T., Kubo, T.,
  Takahashi, H., Takahashi, T., Kuno, M. & Numa, S. (1985) Cloning, sequencing and
  expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle.
  Nature 315, 761-764.
12. Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C. &
  Sakmann, B. (1986) Molecular distinction between fetal and adult forms of muscle
  acetylcholine receptor. Nature 321, 406-411.



 1. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, T., Nakayama,
  H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama,
  S., Hayashida, H., Miyata, T. & Numa, S. (1984) Primary structure of Electrophorus
  electricus sodium channel deduced from cDNA sequence. Nature 312, 121-127.
 2. Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H. &
  Numa, S. (1986) Existence of distinct sodium channel messenger RNAs in rat brain.
  Nature 320, 188-192.
 3. Numa, S. & Noda, M. (1986) Molecular structure of sodium channels. Ann. N. Y. Acad. Sci.
  479, 338-355.
 4. Noda, M., Ikeda, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M. & Numa, S. (1986)
  Expression of functional sodium channels from cloned cDNA. Nature 322, 826-828.
 5. Noda, M. & Numa, S. (1987) Structure and function of sodium channel. J. Receptor Res. 7,
  467-497.
 6. Stuhmer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. (1987) Patch clamp
  characterization of sodium channels expressed from rat brain cDNA. Eur. Biophys. J.
  14, 131-138.
 7. Kayano, T., Noda, M., Flockerzi, V., Takahashi, H. & Numa, S. (1988) Primary structure of
  rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett. 228, 187-194.
 8. Suzuki, H., Beckh, S., Kubo, H., Yahagi, N., Ishida, H., Kayano, T., Noda, M. & Numa, S. (1988)
  Functional expression of cloned cDNA encoding sodium channel III. FEBS Lett. 228,
  195-200.
 9. Stuhmer, W., Conti, F., Suzuki, H., Wang, X.; Noda, M., Yahagi, N., Kubo, H. & Numa, S. (1989)
  Structural parts involved in activation and inactivation of the sodium channel. Nature
  339, 597-603.
10. Beckh, S., Noda, M., Lubbert, H. & Numa, S. (1989) Differential regulation of three sodium
  channel messenger RNAs in the rat central nervous system during development. EMBO J.
  8, 3611-3616.
11. Noda, M., Suzuki, H., Numa, S. & Stuhmer, W. (1989) A single point mutation confers
  tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett. 259,
  213-216.
12. Pusch, M., Noda, M., Stuhmer, W., Numa, S. & Conti, F. (1991) Single point mutations of
  the sodium channel drastically reduce the pore permeability without preventing its
  gating. Eur. Biophys. J. 20, 127-133.
13. Noda, M. (1993) Structure and function of sodium channels. Ann. N. Y. Acad. Sci. 707,
  20-37.
14. Watanabe, E., Fujikawa, A., Matsunaga, H., Yasoshima, Y., Sako, N., Yamamoto, T., Saegusa,
  C. & Noda, M. (2000) Nav2/NaG channel is involved in control of salt intake behavior in
  the central nervous system. J. Neurosci., 20, 7743-7751.
15. Goldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., Hunter, J. C., Kallen, R.
  G., Mandel, G., Meisler, M. H., Netter, Y. B., Noda, M., Tamkun, M. M., Waxman, S. G., Wood, J.
  N. & Catterall, W. A. (2000) Nomenclature of voltage-gated sodium channels. Neuron,
  28, 365-368.
16. Sugawara, T., Tsurubuchi, Y., Agarwala, K. L., Ito, M., Fukuma, G., Mazaki-Miyazaki, E.,
  Nagafuji, H., Noda, M., Imoto, K., Wada, K., Mitsudome, A., Kaneko, S., Montal, M., Nagata,
  K., Hirose, S. & Yamakawa, K. (2001) A missense mutation of the Na+ channel aII subunit
  gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction.
  Proc. Natl. Acad. Sci., 98, 6384-9.
17. Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida S, & Noda M. (2002) Nax is
  involved in the sodium level sensing in the CNS. Nature Neruoscience, 5, 511-2.
18. Watanabe E, Hiyama TY, Kodama R, & Noda M. (2002) Nax sodium channel is expressed in
  non-myelinating Schwann cells and alvelar type II cells in mice. Neurosci. Lett., 330,
19. Watanabe, U., Shimura, T., Sako, N., Kitagawa, J., Shingai, T., Watanabe, E., Noda, M. & Yamamoto, T.
  (2003) A comparison of voluntary salt-intake behavior in Nax-gene deficient and wild-type mice
  with reference to peripheral taste inputs. Brain Res., 967, 247-56.
20. Hiyama, T.Y., Watanabe, E., Okado, H. & Noda, M. (2004) The subfornical organ is the primary
  locus of sodium-level sensing by Nax sodium channels for the control of salt-intake behavior. J.
  Neurosci.
, 24, 9276-9281.
21. Noda, M. & Hiyama, T.Y. (2005) Sodium-level-sensitive sodium channel and salt-intake behavior.
  Chem. Senses, 30 (Supple. 1), i44-i45.
22. Noda, M. (2006) The subfornical organ, a specialized sodium channel, and the sensing of sodium
  levels in the brain. The Neuroscientist, 12, 80-91..
23. Watanabe, E., Hiyama, T.Y., Shimizu, H., Kodama, R., Hayashi, N., Miyata, S., Yanagawa, Y., Obata, K.
  & Noda, M. (2005) Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes
  in the sensory circumventricular organs. Am. J. Physiol. - Regul. Integr. Comp. Physiol., 290,
 R568-576.
24. Shimizu, H., Watanabe, E., Hiyama, T.Y., Nagakura, A., Fujikawa, A., Okado, H., Yanagawa, Y.,Obata, K.
  and Noda, M. (2007) Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing.
  Neuron 54, 59-72.
25. Noda, M. (2007) Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian
  brain. Exp. Physiol. 92, 513-522
26. Nagakura, A., Hiyama, T.Y., and Noda, M. (2010) Na(x)-deficient mice show normal vasopression response
  to dehydration. Neurosci. Letts. 472, 161-165.
27. Hiyama, T.Y., Matsuda, S, Fujikawa, A., Matsumoto, M., Watanabe, E., Kajiwara, H., Niimura, F., and Noda, M.
  (2010) Autoimmunity to the Sodium-Level Sensor in the Brain Causes Essential Hypernatremia.
  Neuron 66, 508-522.
28. Nishihara, E., Hiyama, T.Y. and Noda, M. (2011) Osmosensitivity of transient receptor potential vanilloid 1
   is synergistically enhanced by distinct activating stimuli such as temperature and protons. PLoS ONE
  
6(7), e22246, (2011).  doi:10.1371/journal.pone.0022246
29. Matsumoto, M., Fujikawa, A., Suzuki, R., Shimizu, H., Kuboyama, K., Hiyama, T.Y., Hall, R.A. & Noda, M.. (2012)
  SAP97 prpmotes the stability of Na(x) channels at the plasma membrane.
  FEBS lett. S0014-5793(12)00725-9, 2012.

 1. Maeda, N., Hamanaka, H., Shintani, T, Nishiwaki, T. & Noda, M. (1994) Multiple
  receptor-like protein tyrosine phosphatases in the form of chondroitin sulfate
  proteoglycan. FEBS Lett. 354, 67-70.
 2. Maeda, N., Hamanaka, H., Oohira, A. & Noda, M. (1995) Purification, characterization and
  developmental expression of a brain-specific chondroitin sulfate proteoglycan, 6B4
  proteoglycan/phosphacan. Neuroscience 67, 23-35.
 3. Maeda, N. & Noda, M. (1996) 6B4 proteoglycan/phosphacan is a repulsive substratum but
  promotes morphological differentiation of cortical neurons. Development 122,
  647-658.
 4. Nishizuka, M., Ikeda, S., Arai, Y., Maeda, N. & Noda, M. (1996) Cell surface-associated
  extracellular distribution of a neural proteoglycan, 6B4 proteoglycan/phosphacan, in the
  olfactory epithelium, olfactory nerve, and cells migrating along the olfactory nerve in
  chick embryos. Neurosci. Res. 24, 345-355.
 5. Maeda, N., Nishiwaki, T., Shintani, T., Hamanaka, H. & Noda, M. (1996) 6B4 proteoglycan/
  phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase ζ
  /RPTPβ, binds pleiotrophin/HB-GAM. J. Biol. Chem. 271, 21446-21452.
 6. Shintani, T., Maeda, N., Nishiwaki, T. & Noda, M. (1997) Characterization of rat
  receptor-like protein tyrosine phosphatase γ isoforms. Biochem. Biophys. Res.
  Comm. 230, 419-425.
 7. Hamanaka, H., Maeda, N. & Noda, M. (1997) Spatially and temporally regulated
  modification of the receptor-like protein tyrosine phosphatase ζ/β isoforms with
  keratan sulfate in the developing chick brain. Eur. J. Neurosci. 9, 2297-2308.
 8. Nishiwaki, T., Maeda, N. & Noda, M. (1998) Characterization and developmental regulation
  of proteoglycan-type protein tyrosine phosphatase ζ/RPTPβ isoforms. J. Biochem.
  123, 458-467.
 9. Shintani, T., Watanabe, E., Maeda, N. & Noda, M. (1998) Neurons as well as astrocytes
  express proteoglycan-type protein tyrosine phosphatase ζ/RPTPβ: analysis of mice in
  which the PTPζ/RPTPβ gene was replaced with the LacZ gene. Neurosci. Lett. 247,
  135-138.
10. Maeda, N. & Noda, M. (1998) Involvement of receptor-like protein tyrosine phosphatase ζ
  /RPTPβ and its ligand pleiotrophin /heparin-binding growth-associated molecule
  (HB-GAM) in neuronal migration. J. Cell Biol. 142, 203-216.
11. Nishiwaki, T., Maeda, N. & Noda, M. (1999) Characterization and developmental regulation
  of proteoglycan-type protein tyrosine phosphatase ζ/RPTPβ isoforms. In Neural
  Development, Keio University Symposia for Life Science and Medicine, vol. 2 (K.
  Uyemura, K. Kawamura & T. Yazaki, eds.) pp. 291-297. Springer- Verlag Tokyo.
12. Maeda, N., Ichihara-Tanaka, K., Kimura, T., Kadomatsu, K., Muramatsu, T. & Noda, M. (1999)
  A receptor-like protein-tyrosine phosphatase PTPζ/RPTPβ binds a heparin-binding
  growth factor midkine: Involvement of arginine 78 of midkine in the high affinity
  binding to PTPz. J. Biol. Chem. 274, 12474-12479.
13. Revest, J.-M., Faivre-Sarrailh, C., Maeda, N., Noda, M., Schachner, M. & Rougon, G. (1999)
  The interaction between F3 immunoglobulin domains and protein tyrosine phosphatase ζ
  /β triggers bidirectional signalling between neurons and glial cells. Eur. J. Neurosci.
  11, 1134-1147.
14. Kawachi, H., Tamura, H., Watakabe, I., Shintani, T., Maeda, N. & Noda, M. (1999) Protein
  tyrosine phosphatase ζ/RPTPβ interacts with PSD-95/SAP90 family. Mol. Brain Res.
  72, 47-54.
15. Yamakawa, T., Kurosawa, N., Kadomatsu, K., Matsui, T., Itoh, K., Maeda, N., Noda, M. &
  Muramatsu, T. (1999) Levels of expression of pleiotrophin and protein tyrosine
  phosphatase z are decreased in human colorectal cancers. Cancer Lett. 135, 91-96.
16. Meng, K., Rodriguez-Pena, A., Dimitrov, T., Chen, W., Yamin, M., Noda, M. & Deuel, T.F.
  (2000) Pleiotrophin signals increased tyrosine phosphorylation of β-catenin through
  inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine
  phosphatase β/ζ. Proc. Natl. Acad. Sci. 97, 2603-2608.
17. Shintani, T., Maeda, N. & Noda, M. (2001) Receptor-like protein tyrosine phosphatase γ
  (RPTPγ), but not PTPζ/RPTPβ, inhibits NGF-induced neurite outgrowth in PC12D cells.
  Dev. Neurosci., 23, 55-69.
18. Qi, M., Ikematsu, S., Maeda, N., Ichihara-Tanaka, K., Sakuma, S., Noda, M., Muramatsu, T.
  & Kadomatsu, K. (2001) Haptotactic migration by midkine: Involvement of
  protein-tyrosine phosphatase ζ, mitogen-activated protein kinase and
  phosphatidylinositol 3-kinase. J. Biol. Chem., 276,15868-15875.
19. Kawachi H, Fujikawa A, Maeda N & Noda M. (2001) Identification of GIT1/Cat-1 as a
  substrate molecule of protein tyrosine phosphatase ζ/β by the yeast substrate-
  trapping system. Proc. Natl. Acad. Sci. 98, 6593-8.
20. Thomaidou D, Coquillat D, Meintanis S, Noda M, Rougon G, & Matsas R. (2001)
  Soluble forms of NCAM and F3 neuronal cell adhesion molecules promote Schwann cell
  migration: identification of protein tyrosine phosphatases ζ/β as the putative F3
  receptors on Schwann cells. J Neurochem 78,767-778.
21. Tanaka, M., Maeda, N., Noda, M. & Marunouchi, T. (2003) A chondroitin sulfate proteoglycan
  PTPζ/RPTPβ regulates the morphogenesis of Purkinje cell dendrites in the developing
  cerebellum. J. Neurosci., 23, 2804-2814.
22. Fujikawa, A., Shirasaka, D., Yamamoto, S., Ota, H., Yahiro, K., Fukada, M., Shintani, T., Wada,
  A., Aoyama, N., Hirayama, T., Fukamachi, H. & Noda, M. (2003) Mice deficient in protein tyrosine
  phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori.
  Nature Genetics, 33, 375-381.
23. Sakaguchi, N., Muramatsu, H., Ichihara-Tanaka, K., Maeda, N., Noda, M., Yamamoto, T., Michikawa, M.,
  Ikematsu, S., Sakuma, S. & Muramatsu, T. (2003) Receptor-type protein tyrosine phosphatase z
  as a component of the signaling receptor complex for midkine-dependent survival of embryonic
  neurons. Neurosci. Res. 45, 219-224.
24. Asahi, M., Tanaka, Y., Izumi, T., Ito, Y., Naiki, H., Kersulyte, D., Tsujikawa, K., Saito, M., Sada, K.,
  Yanagi, S., Fujikawa, A., Noda, M. & Itokawa, Y. (2003) Helicobacter pylori CagA containing ITAM-like
  sequences localized to lipid rafts negatively regulates VacA-induced signaling in vivo.
  Helicobacter, 8,1-14.
25. Nakayama, M., Kimura, M., Wada, A., Yahiro, K., Ogushi, K.I., Niidome, T., Fujikawa, A., Shirasaka, D.,
  Aoyama, N., Kurazono, H., Noda, M., Moss, J. & Hirayama, T. (2004) Helicobacter pylori VacA activates
  the p38/ATF-2-mediated signal pathway in AZ-521 cells. J Biol Chem., 279, 7024-7028.
26. Ohyama, K., Ikeda, E., Kawamura, K., Maeda, N. and Noda, M. (2004) Receptor-like protein tyrosine
  phosphatase ζ/RPTPβ is expressed on tangenially aligned neurons in early mouse neocortex.
  Develop. Brain Res., 148: 121-127.
27. Muramatsu H., Zou P., Suzuki H., Oda Y., Chen GY, Sakaguchi N., Sakuma S., Maeda N., Noda M., Takada Y.,
  and Muramatsu T. (2004) a4β1- and a6β1-integrins are functional receptors for midkine, a
  heparin-binding growth factor. J Cell Sci, 117, 5405-5415.
28. Fukada, M., Kawachi, H., Fujikawa, A. and Noda, M. (2005) Yeast substrate-trapping system for
  isolating substrates of protein tyrosine phosphatases: isolation of substrates for protein tyrosine
  phosphatase receptor type z. Methods, 35, 54-63.
29. Niisato K., Fujikawa A., Komai S., Shintani T., Watanabe E., Sakaguchi G., Katsuura G., Manabe T., and
  Noda M. (2005) Age-dependent enhancement of hippocampal long-term potentiation and impairment
  of spatial learning through the Rho-associated kinase pathway in protein tyrosine phosphatase
  receptor type z-deficient mice. J. Neurosci. 25,1081-1088.
30. Fukada, M. & Noda, M. (2006) Yeast substrate-trapping system for isolating substrates of protein tyrosine
  phosphatases. Methods in Mol. Biol., 365, 371-382.
31. Tamura, H., Fukada, M., Fujikawa, A., and Noda, M. (2006) Protein tyrosine phosphatase receptor type Z is
  involved in hippocampus-dependent memory formationthrough dephosphorylation at Y1105 on p190
  RhoGAP. Neurosci. letters, 399, 33-38.
32. Fukuda, M., Fujikawa, A., Chow, J.P., Ikematsu, S., Sakuma, S., and Noda, M. (2006) Protein tyrosine
  phosphatase receptor type Z is inactivated by ligand-induced oligomerization. FEBS letters, i580: 4051-4056.
33. Fujikawa, A., Chow, J.P.H., Shimizu, H., Fukada, M.., Suzuki, R. and Noda, M. (2007) Tyrosine Phosphorylation
  of ErbB4 is Enhanced by PSD95 and Repressed by Protein Tyrosine Phosphatase Receptor Type Z.
  J. Biochem. (Tokyo), 142: 343-350.
34. Shintani, T., and Noda, M. (2008) Protein Tyrosine Phosphatase Receptor Type Z Dephosphorylates TrkA
  Receptors and AttenuatesNGF-dependent Neurite Outgrowth of PC12 Cells. J Biochem. 144:259-266.
35. Chow, J.P., Fujikawa, A., Shimizu, H., and Noda, M. (2008) Plasmin-mediated processing of protein tyrosine
   phosphatase receptor type Z in the mouse brain. Neurosci. Lett. 442:208-212.
36. Chow, J.P., Fujikawa, A., Shimizu, H., Suzuki, R., and Noda, M. (2008) Metalloproteinase- and gamma -secretase-
  mediated cleavage of protein tyrosine phosphatase receptor type Z. J. Biol. Chem. 283: 30879-30889.
37. Toychiev, A., Sabirov, R., Takahashi, N., Ando-Akatsuka, Y., Liu, H., Shintani, T., Noda, M., and Okada, Y. (2009)
  Activation of the maxi-anion channel by protein tyrosine dephosphorylation. Am. J. Physiol. Cell Physiol.
  297(4):C990-1000.
38. Chagnon, M.J., Wu, C.L., Nakazawa, T., Yamamoto, T., Noda, M,. Blanchetot, C., and Tremblay, M.L. (2010)
  Receptor tyrosine phosphatase sigma (RPTPsigma) regulates, p250GAP, a novel substrate that attenuates
  Rac signaling. Cell. Signal. 22: 1626-1633.
39. Nayak, G., Goodyear, R.J., Legan, P.K., Noda, M. and Richardson G.P. (2011)
  Evidence for multiple, developmentally regulated isoforms of PTPRQ on hair cells of the inner ear.
  Dev. Neurobiol. 71: 129-141.
40. Sakamoto, K., Bu, G., Chen, S., Takei, Y., Hibi, K., Kodera, Y., McCormick, L.M., Nakao, A., Noda, M., Muramatsu, T.,
  Kadomatsu, K. (2011)
  The premature ligand-receptor interaction during biosynthesis limits the production of growth factor midkine
  and its receptor LDL receptor-related protein 1(LRP1).
  J. Biol. Chem. 286: 8405-8413.
41. Fujikawa, A., Fukada, M., Makioka, Y., Suzuki, R., Chow, J.P., Matsumoto, M. and Noda, M. (2011)
   Consensus substrate sequence for protein-tyrosine phosphatase receptor type Z
  J. Biol. Chem. 286: 37137-37146.
42. Kuboyama, K., Fujikawa, A., Masumura, M., Suzuki, R., Matsumoto, M. and Noda, M.. (2012) Protein Tyrosine 
  Phosphatase Receptor Type Z Negatively Regulates Oligodendrocyte Differentiation and Myelination.
  PLOS one 7(11): e48797. doi:10.1371/journal.pone.0048797.
43. Fujikawa, A., Matsumoto, M., Kuboyama, K., Suzuki, R., Noda, M. (2015) Specific dephosphorylation at tyr-554 of git1
   by ptprz promotes its association with paxillin and hic-5.
   PloS One 10(3):e0119361.

 1. Yuasa, J., Hirano, S., Yamagata, M. & Noda, M. (1996) Visual projection map specified by
  expression of transcription factors in the retina. Nature 382, 632-635.
 2. Noda, M., Yamagata, M., Yuasa, J. and Takahashi, M. (1997) Topographic and laminar
  connection in the chick retinotectal system. In Molecular basis of axon growth and
  nerve pattern formation (H. Fujisawa, ed.) pp. 197-214. Japan Scientific Societies
  Press, Tokyo.
 3. Takahashi, M., Yamagata, M. & Noda, M. (1999) Specific expression of ezrin, a
  cytoskeletal-membrane linker protein, in a subset of chick retinotectal and sensory
  projections. Eur. J. Neurosci. 11, 545-558.
 4. Yamagata, M., Mai, A., Pollerberg, G.E. & Noda, M. (1999) Regulatory interrelations among
  topographic molecules CBF1, CBF2 and EphA3 in the developing chick retina. Dev.
  Growth Differ. 41, 575-587.
 5. Fukada, M., Watakabe, I., Yuasa-Kawada, J., Kawachi, H., Kuroiwa, A., Matsuda, Y. & Noda, M.
  (2000) Molecular characterization of CRMP5, a novel member of the collapsin response
  mediator protein family. J. Biol. Chem., 275, 37957-37965.
 6. Suzuki, R., Shintani, T., Sakuta, H., Kato, A., Ohkawara, T., Osumi, N. & Noda, M. (2000)
  Identification of RALDH-3, a novel retinaldehyde dehydrogenase, expressed in ventral
  region of the retina. Mech. Develop., 98, 37-50.
 7. Sakuta H, Suzuki R, Takahashi H, Kato A, Shintani T, Iemura SH, Yamamoto TS, Ueno N, & Noda M.
  (2001) Ventroptin: A BMP-4 Antagonist Expressed in a Double-Gradient Pattern in the Retina.
  Science, 293, 111-115.
 8. Yuasa-Kawada, J., Suzuki, R., Kano, F., Ohkawara, T., Murata, M. & Noda, M. (2003) Axonal
  morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization.
  Eur. J. Neurosci., 17, 2329-2343.
 9. Takahashi, H., Shintani, T., Sakuta, H. & Noda, M. (2003) CBF-1 controls the retinotectal topographic
  map along the anteroposterior axis through multiple mechanisms. Development, 130, 5203-5215.
10. Shintani, T., Kato, A., Yuasa-Kawada, J., Sakuta, H., Takahashi, M., Suzuki, R., Ohkawara, T., Takahashi,
  H. & Noda, M. (2004) Large-scale identification and characterization of genes with asymmetric
  expression patterns in the developing chick retina. J. Neurobiol., 59, 34-47.
11. Ohkawara, T., Shintani, T., Saegusa, C., Yuasa-Kawada, J., Takahashi, M. & Noda, M. (2004) A novel
  basic helix-loop-helix (bHLH) transcriptional repressor, NeuroAB, expressed in bipolar and amacrine
  cells in the chick retina. Mol Brain Res., 128,58-74.
12. Sakuta H., Takahashi H., Shintani T., Etani K., Aoshima A., and Noda M. (2006) Role of bone morphogenic
  protein 2 in retinal patterning and retinotectal projection. J. Neurosci. 26, 10868-10878.
13. Yonehara K, Shintani T, Suzuki R, Sakuta H, Takeuchi Y, Nakamura-Yonehara K & Noda M. (2008)
  Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial
  terminal nucleus in the mouse. PLOS one 3(2): e1533. doi:10.1371.
14. Sakuta, H., Suzuki, R., & Noda, M. (2008) Retrovirus vector-mediated gene transfer into the chick optic
  vesicle by in ovo electroporation. Dev Growth Differ. 50:453-457.
15. Noda, M., Takahashi, H., & Sakuta, H. (2009) Neural Patterning: Eye Fields. Encyclopedia of
  Neuroscience 199-204. 2008 Nov 4 [Online available]
16. Yonehara, K., Ishikane, H., Sakuta, H., Shintani, T., Nakamura-Yonehara, K. Kamiji, N.L., Usui, S., & Noda,
   M. (2009) Identification of Retinal Ganglion Cells and their Projections Involved in Central Transmission of
   Information about Upward and Downward Image Motion. PLos one 4(1): e4320. doi:10.1371
17. Takahashi, H., Sakuta, H., Shintani, T. & Noda, M. (2009) Functional mode of FOXD1/CBF2 for the
  extablishmentof temporal retinal specificity in the developing chick retina. Dev. Biol. 331: 300-310.
18. Yonehara, K., Balint, K., Noda, M., Nagel, G., Bamberg, E. and Roska, B. (2010)
  Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit.
  Nature 469: 407-410.


1. Drescher, U., Kremoser, C., Handwerker, C., Loschinger, J., Noda, M. & Bonhoeffer, F. (1995)
  In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to
  ligands for Eph receptor tyrosine kinases. Cell 82, 359-370.
2. Zubair M, Watanabe E, Fukada M, & Noda M. (2002) Genetic labelling of specific axonal pathways
  in the mouse central nervous system. Eur J Neurosci, 15, 807-814.
3. Shintani, T., Ihara, M., Sakuta, H., Takahashi, H., Watakabe, I., & Noda, M. (2006) Eph receptors are
  negatively controlled by protein tyrosine phosphatase receptor type O. Nature Neurosci., 9, 761-769.
4. Shintani, T., Ihara, M., Tani, S., Sakuraba, J., Sakuta, H., and Noda, M. (2009) APC2 plays an essential role
  in axonal projections through the regulation of microtubule stability. J. Neurosci. 29:11628-1164.
5. Shintani, T., Takeuchi, Y., Fujikawa, A. and Noda, M. (2012)
  Directional neuronal migration is impaired in mice lacking adenomatous polyposis coli 2.
  J. Neurosci. 32: 6468-6484
6. Sakuraba J, Shintani T, Tani S, Noda M (2013) Substrate specificity of R3 receptor-like protein tyrosine
  phosphatase subfamily towards receptor protein tyrosine kinases. J. Biol. Chem. 288, 23421-23431.
7. Almuriekhi M*, Shintani T*, Fahiminiya S*, Fujikawa A, Kuboyama K, Takeuchi Y, Nawaz Z, Nadaf J, Kamel H,
  Kitam AK, Samiha Z, Mahmoud L, Ben-Omran T, Majewski J, Noda M. (2015)*Co-first authors
  Loss of Function Mutation in APC2 Causes Sotos Syndrome Features.
  Cell Repotrs S2211-1247(15)00139-4. *Co-first authors

 1. Tanabe, T., Nukada, T., Nishikawa, Y., Sugimoto, K., Suzuki, H., Takahashi, H., Noda, M.,
  Haga, T., Ichiyama, A., Kangawa, K., Minamino, N., Matsuo, H. & Numa, S. (1985) Primary
  structure of the α-subunit of transducin and its relationship to ras proteins. Nature 315,
  242-245.
 2. Kawakami, K., Noguchi, S., Noda, M., Takahashi, H., Ohta, T., Kawamura, M., Nojima, H.,
  Nagano, K., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. & Numa, S. (1985) Primary
  structure of the α-subunit of Torpedo calfornica (Na+ + K+)-ATPase deduced from cDNA
  sequence. Nature 316, 733-736.
 3. Sugimoto, K., Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Minamino, N., Kangawa, K.,
  Matsuo, H., Hirose, T., Inayama, S. & Numa, S. (1985) Primary structure of the b-subunit of
  bovine transducin deduced from the cDNA sequence. FEBS Lett. 191, 235-240.
 4. Noguchi, S., Noda, M., Takahashi, H., Kawakami, K., Ohta, T., Nagano, K., Hirose, T., Inayama,
  S., Kawamura, M. & Numa, S. (1986) Primary structure of the β-subunit of Torpedo
  californica (Na+ + K+)-ATPase deduced from the cDNA sequence. FEBS Lett. 196,
  315-320.
 5. Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Hirose, T., Inayama, S. & Numa, S. (1986)
  Primary structure of the α-subunit of bovine adenylate cyclase-stimulating G-protein
  deduced from the cDNA sequence. FEBS Lett. 195, 220-224.
 6. Nukada, T., Tanabe, T., Takahashi, H., Noda, M., Haga, K., Haga, T., Ichiyama, A., Kangawa, K.,
  Hiranaga, M., Matsuo, H. & Numa, S. (1986) Primary structure of the α-subunit of bovine
  adenylate cyclase-inhibiting G-protein deduced from the cDNA sequence. FEBS Lett.
  197, 305-310.
 7. Watanabe, E., Maeda, N., Matsui, F., Kushima, Y., Noda, M. & Oohira, A. (1995) Neuroglycan
  C, a novel membrane-spanning chondroitin sulfate proteoglycan that is restricted to the
  brain. J. Biol. Chem. 270, 26876-26882.
 8. Watanabe, E., Matsui, F., Keino, H., Ono, K., Kushima, Y., Noda, M. & Oohira, A. (1996) A
  membrane-bound heparan sulfate proteoglycan that is transiently expressed on growing
  axons in the rat brain. J. Neurosci. Res. 44, 84-96.
 9. Yamagata, M. & Noda, M. (1998) The winged-helix transcription factor CWH-3 is
  expressed in developing neural crest cells. Neurosci. Lett. 249, 1-4.
10. Sugitani, K., Matsunaga, T., Koriyama, Y., Shintani, T., Nakamura, T., Noda, M., and Kato, S. (2006)
  Upregulation of retinal transglutaminase during the axonal elongation stage of goldfish optic nerve
  regeneration. Neuroscience, 142: 1081-1092.
11. Tsuboi, N., Utsunomiya, T., Roberts, R.L., Ito, H., Takahashi, K., Noda, M., and Takahashi, T. (2008)
  The tyrosine phosphatase CD148 interacts with the p85 regulatory subunit of phosphoinositide 3-kinase.
  Biochem. J. 413: 193-200.
12. Sugitani K, Ogai K, Hitomi K, Nakamura-Yonehara K, Shintani T, Noda M, Koriyama Y, Tanii H,
  Matsukawa T and Kato S. (2012) A distinct effect of transient and sustained upregulation of
  cellular factor XIII in the goldfish retina and optic nerve regeneration. Neurochem. Intern.
  61, 423-432.
13. Ayoub E, Hall A, Scott AM, Chagnon MM, Miquel G, Halle M, Noda M, Bikflavi A, Tremblay ML. (2013)
  Regulation of the Src Kinase-Associated Phosphoprotein 55 Homologue by the protein tyrosine
  phosphatase PTP-PEST in the control of cell motility. J. Biol. Chem. [Epub ahead of print]